

Manufactured By:

REQUIRED READING... UNDERSTAND THIS MANUAL!

Thank You and Congratulations on purchasing the **ROCKET!** Within this kit you will find a race winning car with over 21 years worth of **CUSTOM WORKS** design and quality. In order for you to realize this race car's winning potential it is important to follow the written text along with the pictures included. The steps required to build this car are very easy, as long as you read before you build.

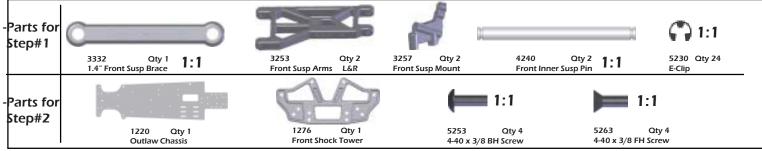
The instructional format for building this car is to open each bag in alphabetical order. Each bag of parts will be broken down into "Steps" thru the manual. All parts and hardware needed to complete all steps for each separate bag, will be found in each individual bag. There is no need to steal screws from other bags. In the rare event you need to look in a different bag for a certain part, it will be noted clearly in the instructions.

Considering the various dirt or clay surfaces that Dirt Oval cars are raced on today, the Outlaw has been designed to be competitive on either loose packed dirt with buggy tires or high bite clay with rubber or foam racing tires. The instructions will build the kit using the most verastale set-up Custom Works has found in testing on different types of tracks, however there are various other suspension configurations available to you that you may find more suitable for your local track. For updates and more proven set-ups login to CustomWorksRC.com.

All hardware (screws, washers, nuts, etc...) are referred to by size and type in the instructions. To help clarify which screw or nut the instruction is calling for refer to the HARDWARE REFERENCE supplement. The size of the screw or nut should match the "shadow" of the same piece very closely.

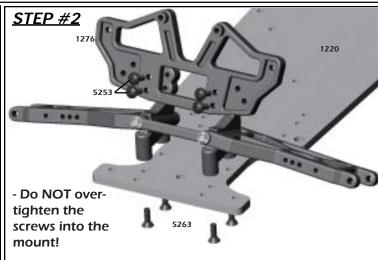
Screw ID's are: FH=Flat Head BH=Button Head SH=Socket Head SS=Set Screw

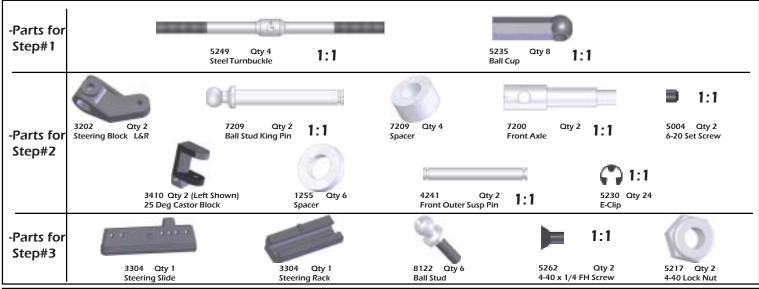
<u>BUILDING TIPS:</u>


- -Using some type of thread locking fluid is suggested for all parts where metal screws thread into other metal parts. We suggest using a lite setting strength thread lock for the reason you may want to take the screw out one day. Remember it only takes a very small amount to secure the screw.
- -Do **NOT** use power screwdrivers to drive screws into parts. The fast rotation speed can easily melt and strip plastic parts or cross-thread into the aluminum parts.
- -Lightly sand the edges of graphite pieces using a medium grade sandpaper to avoid splinters. Run a thin bead of Super Glue around the edges to give pieces greater durability.

<u>SUGGESTED TOOLS</u>

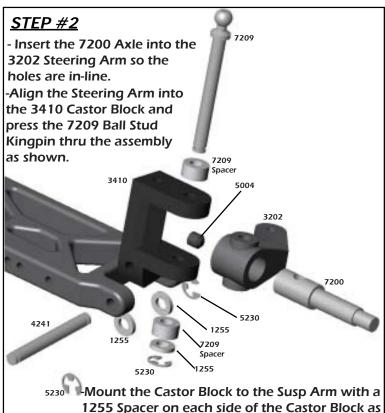
400 Grit Sandpaper Hobby Scissors Small Needle Nose Pliers Wire Cutters X-Acto Knife Phillips Head Screw Driver Blue Loctite 3/16" Wrench


Bag A Front Suspension


- Insert 4240 Inner Pin thru 3332 Susp Brace, then thru first leg of 3253 Susp Arm and into 3257 Front Susp Mount.
- Snap 5230 E-Clips to 4240 Susp Pin.
- Arms should pivot freely on the mounts.

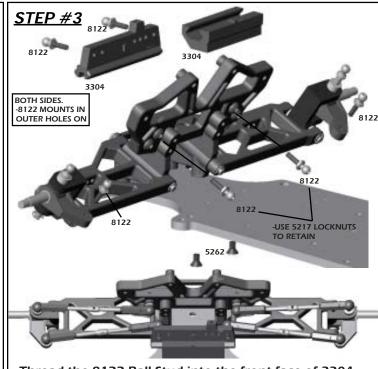
- Fasten the 1276 tower to the suspension assembly.
- Fasten the suspension assembly to the 1222 Chassis.

Bag B Steering Components



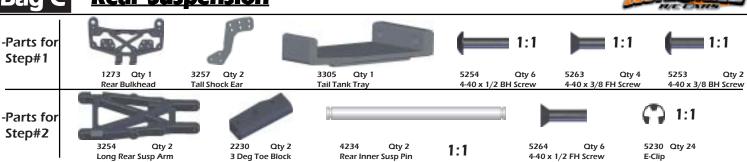
- Thread the 5235 Ball Cups onto the ends of the 5249 Turnbuckle.
- NOTE: Turnbuckle has RIGHT and LEFT threads!

1:1 Assembled Camber Link and Steering Linkage.



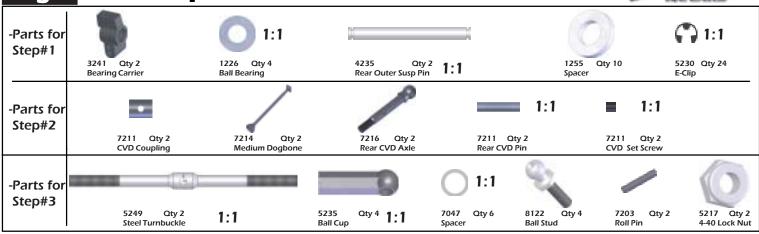
it is fitted between the ears of the Susp Arm.

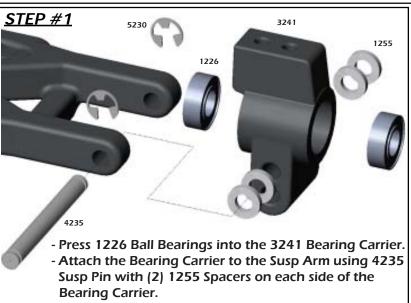
-Insert the 4241 Susp Pin thru the Susp Arm,

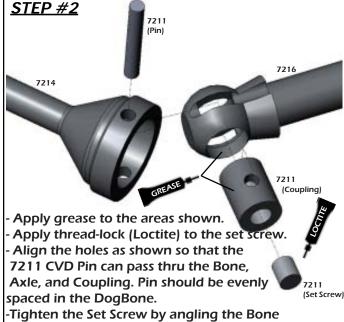

5230 E-Clips to each end of the 4241.

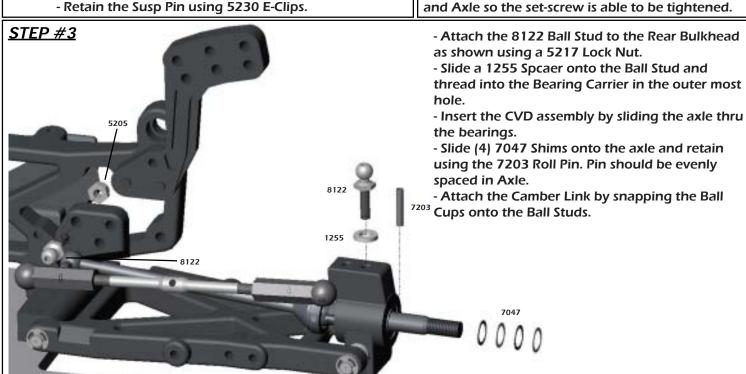
Spacer, and Castor Block. Retain by attaching

- Thread the 8122 Ball Stud into the front face of 3304 Steering Slide, back face of the shock tower, and top face of the Steering Arm as shown.
- -Insert the Steering Slide into the 3304 Steering Rack, mount the rack to the chassis.
- -Mount the linkages from Step #1 by snapping the Ball Cups onto the Ball Studs.






Rear Suspension



- NOTE: The Suspension Pin will pass thru the UPPER hole in the Bearing Carrier.
- Retain the Susp Pin using 5230 E-Clips.

Diff Assembly

- Slide a 4205 Thrust Washer onto the Diff Bolt.
- Apply a thick layer of Black Grease to the Thrust Washer, press (6) 4204 Thrust Balls into the Black Grease.
- Slide the other Thrust Washer on the Diff Bolt and insert it into the 4403 Left Outdrive.
- Press (1) 1229 Bearing into the Outdrive.
- Put (1) 4404 Diff Ring on the Outdrive, apply Diff Lube as shown.

- 4357 Diff Balls into the Diff Gear.
- Put (1) 4404 Diff Ring onto the 4403 Right Outdrive, apply Diff Grease as shown.
- Install the 4362 Diff Spring and 4361 T-nut into the Outdrive.
- Carefully slide the diff assembly together so the Diff Bolt passes thru the entire assembly and threads into the T-nut.
- -Screw the Diff Bolt into the T-nut until you feel the Diff Spring fully compress. DO NOT OVERTIGHTEN!!!
- Back the Diff Bolt off EXACTLY 1/8 of a turn. Diff motion should be smooth and the Outdrives will turn in opposite directions.

STEP #2

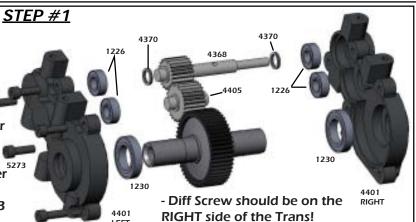
- Press the 4406 Roll

Pin into the hole in

the Top Drive Shaft.

4406

Baa **Transmission Casing**



- Press the (2) 1230 Bearings and (4) 1226 Bearings into each 4401 Transmission Half. - Slide (1) 4370 Thick Washer

on each side of the 4368 Top Drive Shaft.

 Insert the Diff Assembly, Top Drive Shaft, and 4405 Idler Gear into the RIGHT Trans Half.

- Align the LEFT Trans Half over the gears and secure it to the RIGHT Trans Half with (5) 5273 Screws.

Spur Gear Assembly

-Parts for Baq G

Qty 1 Disc Brake Adapter

Qty 1 Brake Disc

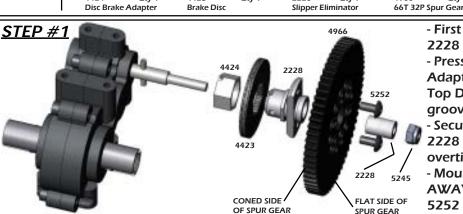
2228

Qty 1

Qty 1

4-40 x 1/4 BH Screw

Qty 2



Spacer

5-40 Locknut

Qty 1 Qty 1

- First slide the 4424 Disc Brake Adapter onto the 2228 Slipper Eliminator so the grooves are aligned.
- Press the 4423 Brake Disc onto the 4424 Brake Adapter and slide the entire assembly onto the Top Drive Shaft so that the Roll Pin keys into the grooves.
- Secure the assembly to the Top Shaft with the 2228 Spacer and the 5245 Locknut. Do NOT overtighten the nut on the Top Shaft!
- Mount the 4966 Spur Gear so the flat side faces AWAY from the transmission. Secure using (2) **5252 Screws.**

Brake Assembly

-Parts for Bag H

4420 Qty 1 Brake Bracket

4421 Qty 1

4425

Qty 1

Qty 2 4-40 x 1/4 BH Screw

- Slide the 4421 Brake Shoe onto the 4420 Brake Bracket with both crescent shape cutouts facing the same direction.
- Install the Brake Bracket onto the transmission so that the Brake Disc is between the Bracket and Shoe.
- Secure the Bracket using 5252 Screw. -Slide the 4422 Brake Cam thru the small holes in the Brake Bracket. The lever of the Brake Cam should be facing the same direction as the pictures shown. -Secure the Brake Cam using 4425 Clip.

<u> Transmission Casing</u>

-Parts for Bag I

Short Body Post

Qty1

3229

3229 Qty 1 Post Collar

3229

Set Screw

Qty 1

1202 Qty 1 Trans Spacer

3265 Qty 1 Trans Spacer

4-40 x 3/8 FH Screw

5253

Qty 4

4-40 x 1" FH Screw

- Attach 3229 Body Post to 3309 Trans Brace using 3229 Screw. Slide 3201 Post Collar onto the Body Post and secure using 3229 Set Screw.

5264 Qty 4 4-40 x 1/2 FH Screw

- Secure the Trans to the Chassis using (2) 5253 Screws thru the 3265 Trans Support and (4) 5264 Screws thru the 1202 Trans Spacer as
- Attach the Trans Brace to the Trans and Rear Bulkhead using 5253 Screws.
- NOTE: Align the dogbone shafts into the outdrives of Trans as you mount the trans!

Shock Bac

Shock Assembly

NOTE: Put a few drops of oil on the O-Rings!

STEP #1

1428

Attach 1436 Shock Piston to 1428 Shaft using 5230 E-Clips to secure.

- Press 1250 O-rings into 1424 Shock Body followed by 1434 Shaft Guide. Retain using 1435 Clip.

TIP: To press clip in easiest, compress the clip so the diameter is a little smaller.Insert open end of clip first, working counterclockwise to the bent end as shown.

STEP #2

- Snap Pivot Ball into the 5228 Ball End. Thread the Ball End onto the Shock Shaft until the Ball End is flush with the end of threads on the shaft.

- Press 1432 Eyelet Cap into 1431 Threaded Shock Cap so that guide in the Eyelet Cap lines up in the recess in the Threaded Shock Cap.

- Press the 1437 Firm Bladder (BLACK) into the Threaded Shock Cap so the dome of the bladder points away from the Eyelet Cap.

 Fill the Shock Body with oil to the top then thread the Eyelet Cap assembly onto the Shock Body until tight.

-NOTE: See shock filling tips for more instructions.

Filling Shocks: Steps 1-4 Setting Shock Rebound: Steps 5-8 SHOCK FILLING INSTRUCTIONS:

1) Holding the shock upright, fill with oil until the top of the body. 0//

> SUGGESTED 40 W/T R/C SHOCK OIL.

2) Slowly move the shaft up and down several times to allow air bubbles to escape to the top.

oil to the top of the shock body.

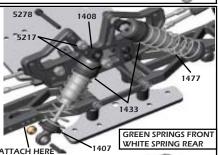
Body until it is hand tight. Oil should seep 👩 out of the bleed hole in the Threaded Cap.

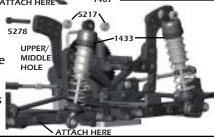
3) Refill with |4) Thread the Eyelet Cap |5) Move the shock shaft in and out a assembly onto the Shock | few times and then push it all the way in. It should be easy to push the shaft in until the eyelet hits the body.

6) Then the shaft should push itself out to its full length slowly.

7) If the shock does not push out this far there is not enough oil in it. Add just a little oil and try steps 5-6 again.

8) If the shockrebounds too fast, or you cannot push the shaft in until the eyelet hits the body, there is too much oil. Loosen the cap and pump out a small amount of oil by pushing the shaft in. Retighten the cap and try steps 5-6 again.


STEP #3


Thread 1433 Spring Collar onto the shock. Slide the springs onto the shock and secure using the 1407 spring bucket as shown.

Press 5278 Screws thru the holes on the front tower and thru the upper/middle set of holes on the rear tower. Secure using 5217 Nut.

Install the shocks onto the screws 5278 with the shoulder of the 1408 Mount Ball facing the tower, secure with 5217 Nut.

Attach the shock to the susp arms in the outer most holes on both front and rear arms as shown.

Bag J

Fuel Tank / Motor Mounts

Qty 8

-Parts for Step#1

Fuel Tank

Pipe Mount

4966

Qty 1

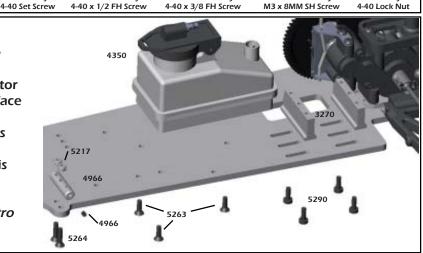
Qty 2

5264

5263

Qty 3

1:


5217

Qty 2

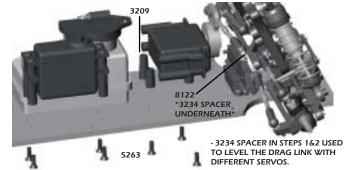
STEP #1

- Attach the 4450 Fuel Tank to the chassis using the 5264 Screws.
- Mount the 3270 Motor Mounts using the 5290 Motor Mount Screws. The slanted edge of the mount will face toward the spur gear.
- Mount the 3262 Pipe Mount using the 5264 Screws and 5205 Nuts.
- -Thread the 4966 Set Screw into the pipe mount, this will be used to secure the wire coming from your exhaust pipe to the car.

NOTE: The extra 5290 screws are to mount your nitro motor after completion of the Clutch Baq.

Bag K Servo and Linkage Installation

STEP #1


- Attach 5240 Servo Mounts to your steering servo in the position shown using 5253 Screws. ALSO do this for throttle servo in the same position as well now.
- Thread 8122 Ball Stud into the upper-most center hole in the 5242 Servo Saver using the 3234 Spacer.
- Attach both 8130 Ball Cups to one another using the 5281 Stud until the Ball Cups bottom out on one another. Snap a Ball Cup onto the Ball Stud on the Servo Saver.
- Determine which of the Spline Inserts are correct for your servo by pressing it over the drive on the servo. Align the servo so it has equal throw in both directions.
- Press the Servo Saver onto the Spline Insert so that the Servo Saver is perpendicular to the servo, attach using the screw that came with your servo.

<u>STEP #2</u>

- Mount the servos to the chassis using 5263 Screws as shown.
- Thread the 8122 Ball Stud into the top of the Steering Slide, Snap the Ball Cup onto the Ball Stud.
- -Using double sided tape, mount your reciever to the top of the steering servo.
- Attach 3209 Antenna Mount in either of the two holes shown below.

NOTE: Steering movement should be bind free except for the restriction of the servo transmission.

5246 STEP #3 Ball Cup 5228 **Throttle Rod Assembly:** Thread the 5228 Throttle Rod into 5246 Ball Cup. 5246 Slide the parts shown on the Throttle Rod, LONG Rod secure the collars using 5282 set screws. Mount the 5246 Swivel onto the Servo Horn thru the outer most SMALL diameter holes. Attach using either the plastic or steel snap-clip. **Brake Rod Assembly:** - Thread the 5228 Brake Rod half way into the 5215 Ball End. Press the 5215 Pivot Ball into the Ball End. 5246 Servo Horn - Slide 5246 Collar onto the Brake Rod followed by 5246 Tubing. -Mount the Brake Rod to the Servo Horn by placing 5201 Screw thru the Pivot Ball and 5232 Cone Spacer into the INNER most hole on the arm opposite the Throttle Linkage

NOTE: For illustrative purposes the motor has been placed in the car. You will want to mount the motor after you have completed the Cage assembly step.

Installation:

- Slide the open end of the Brake Rod thru the front of the Brake Cam.
- Slide 5246 Tubing Followed by 5246 Collar on the Brake Rod.
- Secure all Collars using 5282 Set Screws.

Swivel. Secure using 5204 Locknut.


- Align the servo so it has equal throw in both directions. Press the Servo Horn onto the Servo so that the Servo Horn is perpendicular to the Servo Body as shown. Attach using the screw that came with your servo.
- Trim the remaining length of the Servo Horn on the Brake Linkage side to prevent collision with the Sprint Cage. It may be necessary to bend the Brake Cam upward to allow for proper clearance with the Sprint Cage as well.

LINKAGE SET-UP: -To be done with the radio unit ON!
-Keep the servo positioned at idle as shown in Figure #1! Might be necessary to re-align both the Steering Servo Saver and the Throttle Servo Horn once the radio is "ON" and the servos find their actual center. Throttle Linkage: Loosen the collar on the right side of the Swivel and slide the Rod so that the carb can fully close. Next slide the right side collar up against the Swivel and tighten. Lastly adjust the left side collar so that it compresses the spring 1/8" to 3/16".

Brake Linkage: Slide the Tubing on the Brake Rod so the Tubing is tight to the Brake Cam and the brake is only slightly engaged to the brake pad, there should be slight resistance when trying to spin the spur gear.

-Within your radio locate the End Point Adjustments (EPA) setting. Here you will reduce the amount of travel your servo has so that you do not damage your carb. Notice the carb position in Figure #2, this is FULL throttle to the motor and the servo should pull no further than this.

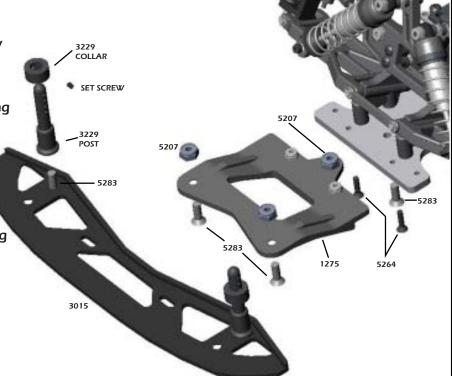
-Set the Braking End Point so that at full brake (Figure #3) the spring on the throttle linkage is just about fully compressed.
-Set the EPA for the Steering Servo as well, so that it will only turn the amount the car will allow it.

5204

5246

Steel or

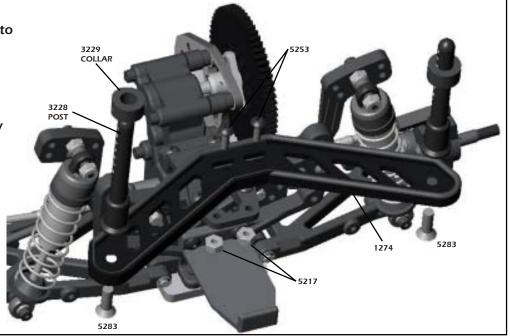
Mount Bag


FRONT

- Slide the Post Collar onto the 3229 Short Body Post, use the Set Screw to retain the Collar.

- Mount the (2) 3229 Short Body Posts to the rearward set of holes on the 3015 Bumper using 5283 Screw.

- Attach and center the 3015 Bumper to the 1275 Front Clip using 5283 Screws and 5207 Nuts. The bumper is slotted to allow you to adjust the body position easily.


- Mount the 1275 Front Clip to the Chassis using
(1) 5283 Screw and 5207 Nut along with (2)
5264 Screws and 5217 Nuts.

REAR

- Mount the (2) 3228 Long Body Posts to the 1274 Rear Body Mount.

- Attach and center the 1004 to the Trans Brace using 5253 Screws and 5217 Lock Nuts. The rear mount is slotted to allow you to adjust the body position easily.

Clutch Bag

Clutch Assembly

Parts for Clutch Baq

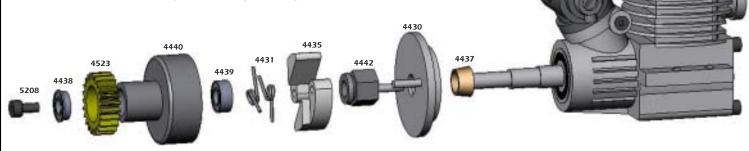
23T Pinion

Flanged Bearing

Clutch Bearing

Qty 1

M3x6mm SH


- Slide the 4437 Collet onto you motor followed by the 4430 Flywheel.
- Secure the Flywheel using 4442 SG Nut.
- Place the 4435 Clutch Shoes onto the clutch facing the direction shown and secure with 4431 Clutch Springs.

NOTE: Install the springs by placing one leg on the Shoe, then press the other leg into the groove in the Clutch Nut using a Driver Wrench. - Slide 4438 Bearing onto the motor shaft followed by the 4440 Clutch Bell then

the 4439 Flanged Bearing. - Secure the assembly using 5208 Screw. The clutch bell should spin "FREELY" with the screw tight. It is OK if the clutch bell slides back and forth on the

motor shaft slightly. If there is too much play use the extra shims provided to correct this.

- Thread the 4523 Pinion Gear onto the Clutch Bell with the side of the pinion with the threads all the way to the edge facing AWAY from the motor.

MISC...

Radio Gear: Best suggested to mount the reciever pack on the rear 3305 Tail Tray. Reciever can be mounted anywhere on the chassis.

Body: Suggested to use the CustomWorks #9012 Eldora Body. It is a two-piece design and will work best if you remove the front and rear window material so the air can easily reach the rear spoiler. Leaving the material in makes for a much more aggressive body usually not best for rubber tire.

Tire Bac

Tire & Wheel Installation

-Parts for Bag M

Qtv 2

6214 Qtv 2 Street-Trac REAR

6220 Qtv 2

6221 Qtv 2 Soft Insert REAR

6252

6253

Rear Wheel

5207 Qtv 4 8-32 Lock Nut

1226 Qty 4 **Ball Bearing**

Qtv 2 7220 Axle Spacer

NOTE: In this step you will be using a fast drying super glue type adhesive to secure the tires and wheels to each other. Be very careful with this process as the glue can tend to run very easily through the tire and may glue your finger to the tire or wheel before you know it. You must follow the directions and precautions provided by the glue manufacturer to insure a secure bond.

STEP #1: Using a reamer or a small drill bit make a hole in the center of each of the 4 wheels as shown in Figure 1.

STEP #2: Place the foam inserts into the tires with the wider inserts going in the rear tires, the narrower in the fronts. Make sure the insert is laid into the tire evenly. As shown in **Figure 2** it should not be bunched up too much in any area.

STEP #3: Place the wheel inside of the tire and work both beads of the tire into the channels on the outside edge of the wheel. Peel back a portion of the tire from the wheel and apply an even bead of tire glue between the wheel and the tire as shown in **Figure 3.** It may be easiest to only glue one section at a time, rather the entire bead at once. Also wrapping electrical tape around the edge of the tire will help hold the tire tight to the wheel as the glue sets. Repeat this step several times working your way around the tire until it is secure.

You may repeat this process now for the remaining 3 tires BUT BE SURE TO PLACE THE FRESHLY GLUED SIDE UP until it has dried completely. Once dry it is a good idea to go back and re-seal the edges by applying another small bead of glue and letting it run around the edge of the tire at the gap between tire and wheel.

STEP #4: Place one #1226 Bearing into each side of the front wheels as shown in Figure 4.

Figure 1 Figure 3 Figure 4

Figure 6

STEP #5: Refer to Figure 5 and place one 7047 shim over the front axle followed by the front wheel and then the 7220 Axle Spacer. Now secure with one 5207 Locknut, be very careful to not overtighten the nut. You want to tighten it just enough to eliminate any slop from side to side but no more. Repeat for other side of car.

STEP #6: Now slide one of the rear wheels onto the rear axle as shown in **Figure 6.** Be sure to index the roll pin in the axle so that it slides into the drive slot molded in the back of the wheel. Secure with a 5207 locknut. Wheel should spin freely, remove 7047 spacers from behind roll pin if necessary. Do not overtighten 5207 nut.

Figure 5

TIRE TIPS:

- The tires work best after a run or two of breaking in depending on the dirt oval track surface. Lightly scuffing the tires on asphalt (1min of gentle driving) helps break them very quickly.
- Cleaning the tires with Simple Green and a rag works very well and gives the tire a little more grip.
- Traction additives such as Paragon or Buggy Grip also help with traction but will not cure ill-handling issues. If you do not have these products, applying WD-40 to the tire can do wonders as well.

CONGRATULATIONS!!! You have now completed the assembly process of your new Custom Works Rocket! In the next section of this manual you will find some basic setup hints and advice. It is important to remember that all tracks and racing surfaces are different. Therefore the suggestions we give you are general in nature and should by no means be treated as the only options.

MAINTENANCE:

Occasionally dirt will get into the moving and pivoting locations in your car. It is best to periodically clean your car to keep all the suspension components moving freely. Read the tips below to keep your car running at its best!

- Begin by removing the majority of the dirt using a small brush, toothbrush, or compressed air.
- Compressed air is ok to use, be mindful to not FORCE the dirt into the radio gear, transmission, bearings, or air filter. Typically these items only have dirt on them, hitting the dirt with the compressed air puts dirt *IN* these parts!
- Tires, either foam or rubber are best cleaned using water or cleaners like Simple Green (TM). Simple Green also does a great job cleaning car parts as well. Lightly spraying car parts (NOT radio components, transmission, air filter, or bearings) with Simple Green and blowing off with compressed air or wiping the parts using the paint brush is a great way to clean in a hurry.
- Another R/C friendly cleaner is WD-40 (TM). After the car is clean, very lightly spray the car components and bearings (NOT radio components, transmission, or air filter). Use your brush or compressed air to remove the extra WD-40. This will lube your bearings and leave a protective coating on the parts making it easier to remove dirt later.
- Differential Maintenance is needed when the action of the diff feels "notchy". Usually cleaning the diff parts, re-sand the thrust and diff plates with 400 paper, and lube appropriately will be all that is needed to bring back to new. Ignoring your differential will lead to handling woes and increase transmission temps, which will cause part failure.

TUNING TIPS: These are some general guidelines for optimizing handling performance. None of these "tips" are EVER set in stone. On any given day this manual or any chassis engineering book or guru can be proved wrong by the stop watch. A good way to approach chassis set-up is to try one change, practice it, think how the car felt different from before, and compare lap times from the stop watch.....this will never fail.

Car Pushes (understeers):

- Decrease Spoiler on Body
- Heavier Rear Spring
- Softer Front Spring
- Use Rear Sway Bar
- Try Softer Front Compound Tire
- Try Harder Rear Compound Tire
- Lower Front Ride Height
- Raise Rear Ride Height
- Thread Shock Collar UP on Right Front
- Thread Shock Collar DOWN on Right Rear
- Decrease Rear Toe
- Decrease Castor
- Add Rear Toe Stagger or Increase the difference

Car Is Loose (oversteers):

- Increase Spoiler Angle
- Softer Rear Spring
- Heavier Front Spring
- Use Front Sway Bar
- Try Harder Front Compound Tire
- Try Softer Rear Compound Tire
- Raise Front Ride Height
- Lower Rear Ride Height
- Thread Shock Collar DOWN on Right Front
- Thread Shock Collar UP on Right Rear
- Increase Rear Toe
- Increase Castor
- Decrease Rear Toe Stagger or Decrease the difference

Car Is Erratic:

- Bent Suspension Pins: Remove shocks to check free movement.
- Bound Ball Joint: Should spin free on balls while mounted to the car.
- Bent or Loose Camber Links
- Wore out Bearings or Completely Seized Bearings
- Chunked Tire: Check to see if Foam or Rubber Tire is still glued to wheel.
- Loose Screws: Especially Chassis Screws, add Blue Loctite to prevent.
- Shocks: Either Bound-up or Out of Oil. Must swivel freely on mounts.
- Foreign Objects: Unlucky Dirt/Stones preventing Suspension or Steering Movement.
- Blown Differential
- Radio Problem: Bad Servo, Weak Servo Saver Spring, Transmitter Pot blown.

SET-UP GUIDELINES:

When looking for the "perfect set-up" it is important to remember 2 things...

- 1) Keeping things simple is best.
- 2) As you are making your set-up change, the track is changing too! Ask a local racer what the track usually does from begining to end, especially day to night.
- Start your car's ride height with it equal at all four corners to start. Use the shock collars to adjust ride height by measuring the distance under the chassis when the car is sitting on a FLAT & LEVEL surface.
- Shock collars can only jack weight and adjust the car's handling when the car makes ALL 4 shocks squat when the car is set down. Use the RF shock collar to adjust how the car ENTERS the corner. Use the RR shock collar to adjust how the car exits the corner ON-POWER. Use the LF shock collar to make the car turn in less, and off the corner more.
- It is best to have a little bit of brake drag when you let off the gas, this will allow for a more controlable car in ALL conditions. Increasing how much the brake drags will make your car turn into the corner harder.

SET-UP GLOSSARY:

<u>Caster:</u> Angle of the kingpin in relation to a vertical plane as viewed from the side of the car. Increasing the angle will make the car more stable out of the turn and down the straights and increase steering entering a turn. Decreasing the angle will make the car feel more "touchy" at high speeds and help steering while exiting the turn.

<u>Camber Gain:</u> Angle of the Camber Link relative to the Suspension Arm. Lowering the camber link on the shock tower OR raising the camber link on the castor block will INCREASE the camber angle of the tire when the suspension is compressed. Raising the camber link on the shock tower OR lowering the camber link on the castor block will DECREASE the camber angle of the tire when the suspension is compressed. There is not a "correct" set-up and once again too much of anything is generally bad. This will help change the "feel" of the car thru the turns.

<u>Camber Link Length:</u> Comparing this to the length of the Suspension Arm from each pivot point and keeping the Camber the same, making the link *shorter* will decrease traction for that corner of the car while making it *longer* will increase traction for that corner of the car. Once the camber link is equal to or greater than the Suspension Arm pivots, the gain of traction ends. Also a shorter camber link will increase camber gain and a longer decrease camber gain.

Shock Angle: Leaning the shock toward the car is effectively like changing to a *softer* spring. Standing the shock closer to vertical is effectively like changing to a *stiffer* spring. Try when the car is working well and when one spring change is TOO much for your set-up.

Ride Height: Check by pushing the chassis down once or twice to simulate bumps on the track. Having the front end *higher* than the rear will make the car increase rear traction especially out of the turn. Having the front end *lower* than the front will make the car increase front traction especially entering the turn. Generally its safe to start the car with the ride heights even.

Rear Toe-In: Front edge of car tires point *toward* the chassis as viewed from above the car. Increasing the angle toward the car will increase rear traction while decreasing front traction. Decreasing the angle will do the opposite.

<u>Rear Toe Stagger:</u> Difference in the amount of Rear Toe-In among the rear tires. Typically used only on high bite tracks with MORE toe-in on the Left Rear tire than the Right so the rear of the car helps turn the car LEFT under acceleration.

<u>Wheelbase</u> (Front End): Wheelbase is the distance between the front and rear axles. Running the entire front end assembly in the forward position makes the wheelbase longer and therefore more stable on long/fast tracks with flowing turns. Running the entire front end assembly in the rear position make the wheelbase shorter and therefore more suitable for short-tracks where you are constantly turning.

<u>Wheelbase (Rear End):</u> This adjustment uses the plastic spacers on the kingpin the rear bearing carrier rides on. With the spacers in front of the carrier it will lengthen the wheelbase but will increase steering. If the spacers are behind the carrier it will shorten the wheelbase but increase rear traction. This is completely backwards from how it works for the Front End only because in the rear of the car you have the weight of the motor and the torque it creates. Shortening the wheelbase here makes more of the car hang over the rear tires and promotes more weight transfer.

<u>Final Drive Chart:</u> The chart provided below gives you the final drive of the motor to spin the axle 1 revolution. This chart is NOT just the pinion and spur, but has the transmission ratio included as well.

48 Pilch

- To determine the final drive in your car:
- 1) Divide the Spur Gear by the Pinion Gear, which equals a "Ratio".
- 2) Multiply the "Ratio" by the "Transmission Ratio" which will equal your "Final Drive".

Transmission Ratio = 2.4 for this car.

- Gearing choice can vary greatly depending on track size, surface type, amount of traction, you motor and driving style. For starters consult your local hobby dealer or fellow racer at your local track for the ideal gear choice for your application.

	64 Pitch				Spur Gear				
	Pinion	78	81	85	88	93	96	100	104
	16	11.70	12.15	12.75	.13.20	13.95	14.40	15.00	15.60
	17	11.01	11.44	12.00	12.42	13.13	13.55	14.12	14.68
	18	10.40	10.80	11.33	11.73	12.40	12.80	13.33	13.87
١	- 19	9.85	10.23	10.74	11.12	11.75	12.13	12.63	13.14
	20	9.36	9.72	10.20	10.56	11.16	11.52	12.00	12.48
	21	8.91	9.26	9.71	10.06	10.63	10.97	11.43	11.89
	22	8.51	8.84	9.27	9.60	10.15	10.47	10.91	11.35
	23	8.14	8.45	8.87	9.18	9.70	10.02	10.43	10.85
	24	7.80	8.10	8.50	8.80	9.30	9.60	10.00	10.40
	25	7.49	7.78	8.16	8.45	8.93	9.22	9.60	9.98
	26	7.20	7.48	7.85	8.12	8.58	8.86	9.23	9.60
	27	6.93	7.20	7.56	7.82	8.27	8.53	8.89	9.24
	28	6.69	6.94	7.29	7.54	7.97	8.23	8.57	8.91
	29	6.46	6.70	7.03	7.28	7.70	7.94	8.28	8.61
	30	6.24	6.48	6.80	7.04	7.44	7.68	8.00	8.32
	31	6.04	6.27	6.58	6.81	7.20	7.43	7.74	8.05
	32	5.85	6.08	6.38	6.60	6.98	7.20	7.50	7.80
	33	5.67	5.89	6.18	6.40	6.76	6.98	7.27	7.56
	34	5.51	5.72	6.00	6.21	6.56	6.78	7.06	7.34
	35	5.35	5.55	5.83	6.03	6.38	6.58	6.86	7.13
	36	5.20	5.40	5.67	5.87	6.20	6.40	6.67	6.93
	37	5.06	5.25	5.51	5.71	6.03	6.23	6.49	6.75
	38	4.93	5.12	5.37	5.56	5.87	6.06	6.32	6.57
	39	4.80	4.98	5.23	5.42	5.72	5.91	6.15	6.40
	40	4.68	4.86	5.10	5.28	5.58	5.76	6.00	6.24
	41	4.57	4.74	4.98	5.15	5.44	5.62	5.85	6.09
	42	4.46	4.63	4.86	5.03	5.31	5.49	5.71	5.94
	43	4.35	4.52	4.74	4.91	5.19	5.36	5.58	5.80
	44 .	4.25	4.42	4.64	4.80	5.07	5.24	5.45	5.67
	45	4.16	4.32	4.53	4.69	4.96	5.12	5.33	5.55
	46	4.07	4.23	4.43	4.59	4.85	5.01	5.22	5.43
	47	3.98	4.14	4.34	4.49	4.75	4.90	5.11	5.31

40 PIUGII				apur Gear				
Pinion	- 66	68	70	72	75	78	81	84
12	13.20	13.60	14.00	14.40	15.00	15.60	16.20	16.80
13	12.18	12.55	12.92	13.29	13.85	14.40	14.95	15.51
14	11.31	11.66	12.00	12.34	12.86	13.37	13.89	14.40
15	10.56	10.88	11.20	11.52	12.00	12.48	12.96	13.44
16	9.90	10.20	10.50	10.80	11.25	11.70	12.15	12.60
17	9.32	9.60	9.88	10.16	10.59	11.01	11.44	11.86
18	8.80	9.07	9.33	9.60	10.00	10.40	10.80	11.20
19	8.34	8.59	8.84	9.09	9.47	9.85	10.23	10.61
20	7.92	8.16	8.40	8.64	9.00	9.36	9.72	10.08
21	7.54	7.77	8.00	8.23	8.57	8.91	9.26	9.60
22	7.20	7.42	7.84	7.85	8.18	8.51	8.84	9.16
23	6.89	7.10	7.30	7.51	7.83	8.14	8.45	8.77
24	6.60	6.80	7.00	7.20	7.50	7.80	8.10	8.40
25	6.34	6.53	6.72	6.91	7.20	7.49	7.78	8.06
26	6.09	6.28	6.46	6.65	6.92	7.20	7.48	7.75
27	5.87	6.04	6.22	6.40	6.67	6.93	7.20	7.47
28	5.66	5.83	6.00	6.17	6.43	6.69	6.94	7.20
29	5.46	5.63	5.79	5.96	6.21	6.46	6.70	6.95
30	5.28	5.44	5.60	5.76	6.00	6.24	6.48	6.72
31	5.11	5.26	5.42	5.57	5.81	6.04	6.27	6.50
32	4.95	5.10	5.25	5.40	5.63	5.85	6.08	6.30
33	4.80	4.95	5.09	5.24	5.45	5.67	5.89	6.11
34	4.66	4.80	4.94	5.08	5.29	5.51	5.72	5.93
35	4.53	4.66	4.80	4.94	5.14	5.35	5.55	5.76

